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The interaction of a scalar wave (thermal neutrons) with a single Si crystal is

treated using Ewald’s self-consistent field method. Considering from the very

beginning the two-dimensional translation symmetry of the problem, the

reflectivities of allowed and forbidden reflections in the Bragg geometry valid

for both coplanar and non-coplanar cases are derived. It is shown that there

exists a very narrow reflectivity peak of the forbidden reflection as a result of the

symmetry breaking due to a crystal surface.

1. Introduction

In the dynamical theory of diffraction of Bethe and von Laue

the intensity of the reflected beam is determined by the

structure factor (e.g. Authier, 2001; Rauch & Petraschek, 1978;

Sears, 1989). Reflections for which it takes zero value are

called forbidden and are of zero intensity. Based on the

Darwin approach and using a very artificial model of a single

ideal crystal with two identical atoms in an elementary cell,

Ignatovich et al. (1996) have shown that the forbidden

reflections are not absent but have a very small Darwin table

width (DTW). In the present paper we explore the problem of

forbidden reflections on a single silicon crystal utilizing the

Ewald dynamical diffraction theory [see original papers by

Ewald (1916,1 1917) and a memorial volume for P. P. Ewald

(Cruickshack et al., 1992)]. The Ewald concept of the dyna-

mical diffraction theory in which the crystal is viewed as a

discrete system of scatterers, and thus yields a self-consistent

system of algebraic equations (Dederichs, 1972; Sears, 1989),

was developed and applied both to electromagnetic waves and

scalar waves (neutrons) in a series of our former papers (e.g.

Litzman & Rózsa, 1977; Litzman, 1978, 1980, 1986; Litzman &

Dub, 1982, 1990; Litzman et al., 1996; Dub & Litzman, 2005).

In Litzman (1986) the solution of the quantum-mechanical

Ewald equations was expressed in a lucid matrix form and

amplitudes of the diffracted waves were then obtained in well

arranged determinant forms. The general solution of the

diffraction problem found in Litzman (1986) may be applied

to a lattice with an arbitrary basis. But the resulting formulae

for diffracted waves in such a transparent form as derived for

the crystal with one atom per cell (Dub & Litzman, 2005) have

hitherto been obtained for a single atomic plane only (Dub &

Litzman, 2001b). The challenging case of a three-dimensional

lattice with a composite structure will be dealt with in the

present study.

The paper is organized as follows. In x2 we expose the main

ideas of the quantum-mechanical Ewald dynamical theory of

diffraction and recall the general solution of the multiple

scattering problem of scalar waves (neutrons) on a crystalline

slab obtained by Litzman (1986). In x3 our development is

applied to an ideal silicon crystal. The two-dimensional

translational symmetry of the problem leads to the plane-wise

summation yielding the dispersion relation with poles, the

positions of which are given by the geometry and wavelength

only. The confluence of two poles occurs if the Bragg condition

is satisfied. In xx4 and 5 the reflection of neutrons from a semi-

infinite single silicon crystal in the Bragg geometry is exam-

ined in the two-beam approximation and, in particular, in x5, it

is shown that there exists a very high reflectivity peak in the

forbidden reflection, i.e. in the direction for which the struc-

ture factor is, because of two atomic bases, zero and thus

according to the Laue theory the intensity of such a reflection

should be zero.

2. Basic formulae: the Ewald equations

We will study the diffraction of a scalar plane wave (neutrons)

�inc rð Þ ¼ A exp ik � rð Þ ð1Þ

(where inc = incident) on a system of scattering centres fixed

at points

R�
m ¼ Rm þ r�; ð2Þ

where Rm, with m ¼ m1;m2;m3ð Þ, is a lattice point and r�,

� ¼ 1; 2; . . . ; s; is the position vector of atom � in the unit cell.

1 One hundred years ago, in early 1912, P. P. Ewald submitted his thesis
Dispersion und Doppelbrechung von Elektronengitter (Kristallen) which was
republished in Annalen der Physik in 1916 (Ewald, 1916). Thus our paper shall
also commemorate the 100th anniversary of the first essential contribution of
P. P. Ewald to the dynamical theory of diffraction.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5006&bbid=BB21
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767312014705&domain=pdf&date_stamp=2012-05-10


Considering the point-like scatterers characterized by scat-

tering lengths Q� the Ewald equations read (Dederichs, 1972;

Sears, 1989)

� rð Þ ¼ �inc rð Þ �
X
n;�

Q�

exp ik r� R�
n

�� ��� �
r� R�

n

�� �� �n
� R�

nð Þ; ð3aÞ

�m
� R�

mð Þ ¼ �inc R�
mð Þ �

X
n;� 6¼m;�

0 Q�

exp ik R�
m � R�

n

�� ��� �
R�

m � R�
n

�� ��
��n

� R�
nð Þ; ð3bÞ

where �(r) is the total field at the point r and �m
� ðR

�
mÞ is the

field incident on the scatterer at R�
m (the local field). The prime

in equation (3b) indicates that the interaction of the scatterer

with its own field is excluded.

Further we will consider a crystal slab specified by a set of

vectors

Rm ¼ m1a1 þm2a2 þm3a3; ð4Þ

where m1;m2 ¼ 0;�1;�2; . . . ;�1; m3 ¼ 0; 1; 2; . . . ;N. The

origin of the orthogonal coordinate system Oxyz lies at the

lattice point (0, 0, 0), the plane Oxy coincides with the

entrance crystal surface plane ða1; a2Þ, and the axis Oz (the

unit vector êe3), vectors a3 and a1 � a2 point into the crystal.

Furthermore the lattice ðg1; g2; g3Þ is reciprocal to the three-

dimensional lattice ða1; a2; a3Þ, i.e. gi � ak ¼ 2��ik (i, k = 1, 2, 3),

whereas the lattice ðb1; b2Þ is reciprocal to the two-

dimensional lattice ða1; a2Þ, i.e. bi?êe3, bi � ak ¼ 2��ik (i, k =

1, 2). Thus b1 ¼ gjj1, b2 ¼ gjj2 , with cjj denoting the component

of the vector c parallel to the surface.

Considering diffraction on a crystalline slab possessing the

two-dimensional discrete translation symmetry in the plane

ða1; a2Þ, the total field [equation (3a)] composed of the inci-

dent plane wave and the spherical waves excited by the scat-

terers may be expressed as a superposition of plane waves with

the wavevectors KþpqðkÞ and K�pqðkÞ in the transmission (Laue)

and reflection (Bragg) geometry, respectively, given by

(Litzman, 1986)

K�pq kð Þ ¼ kjj þ pb1 þ qb2 � e3Kpqz kð Þ ð5Þ

with p, q being integers, where according to the photon energy

conservation

Kpqz kð Þ ¼ þ k2
� kjj þ pb1 þ qb2

� �2
h i1=2

: ð6Þ

From equation (6) it can be seen that there is a finite number,

say n, of different couples (p; q) (depending on the wave-

length � of the incident radiation and the angle of incidence �)

yielding 2n radiative waves with real Kpqz(k). Other (p; q)

correspond to non-radiative waves with pure imaginary

Kpqz(k).

Furthermore, note when studying the diffraction on a slab,

three-dimensional lattice sums in equations (3a) and (3b) are

decomposed into sums over n3 in the direction perpendicular

to the surface and two-dimensional ones over ðn1; n2Þ in the

surface plane, which may be transformed into rapidly

convergent sums over ðp; qÞ in the two-dimensional reciprocal

space.

In our former paper (Dub & Litzman, 2001a) we found the

solution of the Ewald equations in the case of the diffraction

by a single atomic plane:

� rð Þ ¼ A exp ik � rð Þ �
2�iA

a1 � a2

�� ��
�
P
p;q

Ps

�¼1

Q�w� exp �ir� � pb1 þ qb2ð Þ
� �� �

�
1

Kpqz

exp iK�pq � r
� �

for z< 0

exp iKþpq � r
� �

for z> 0

(
: ð7Þ

It is worth noting that the unit-cell structure factor

F Gð Þ ¼
Ps

�¼1

Q� exp �ir� �Gð Þ; ð8Þ

where G ¼ u1g1 þ u2g2 þ u3g3 is the three-dimensional

reciprocal-lattice vector, is replaced in equation (7) by an

expression

Ps

�¼1

Q�w� exp �ir� � pb1 þ qb2ð Þ
� �

; ð9Þ

where w� (being slightly different from unity) are amplitudes

of the local field of basis atoms.

The case of a stack of planes is more complicated (see

Litzman, 19862) as the local field �m
� ðR

�
mÞ in a slab is given by

the superposition of plane waves (equation L28),

�m
� R�

mð Þ ¼ exp ikjj � m1a1 þm2a2 þ r�
� �� � a1 � a2

�� ��
2�i

�
PðnÞ

j

cju�  j

� �
exp im3 j

� �
; ð10Þ

which are determined by parameters  j related to the z

components of the local-field wavevectors ~kkj ¼

kjj þ ð1=2�Þð j � kjj � a3Þg3 ¼ kjj þ ~kkjze3 [see equation (12b)

in Dub & Litzman (2005)]. The parameters  j, amplitudes

u�ð jÞ, � ¼ 1; 2; . . . ; s, and coefficients cj can be obtained

when introducing equation (10) into equation (3b). Thus we

found that  j are roots of the equation (L18)

det A  ð Þ ¼ 0; ð11Þ

which is an analogue of the dispersion equation of the Laue

theory, and u1ð jÞ; u2ð jÞ; . . . ; usð jÞ are solutions of the

homogeneous system of linear algebraic equations (L20)

A  j

� � u1  j

� �
u2  j

� �
..
.

us  j

� �

									

									
¼ 0: ð12Þ

Here Að Þ [see (L19)] is a square matrix of order s which is

determined by the unit cell. Furthermore cj are given by the

inhomogeneous system of linear algebraic equations (L37), an

equivalent to boundary conditions,
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2 The prefix L will be used to indicate formulae from this paper.



H

c1

c2

..

.

c2n

									

									
¼ �Akzexp �ia3 � kð Þ

1

0

..

.

0

								

								 ð13Þ

where H [see (L35)] is a square matrix of order 2n, n being the

number of radiative (diffracted) waves.

In the next section we will deal with designing matrices

Að Þ and H in the case of an ideal silicon crystal.

3. Multiwave matrix formulation of Ewald theory for
silicon

Applying the matrix formulation of Ewald theory explained

above to a silicon crystal Si(001), instead of the conventional

unit cube of a face-centred cubic (f.c.c.) lattice containing four

lattice points, we use the primitive unit cell3 defined by

a1 ¼ a; 0; 0ð Þ; a2 ¼
a

2
;

a

2
; 0


 �
; a3 ¼

a

2
; 0;

a

2


 �
; ð14Þ

with a = 0.5430 nm, two identical motionless silicon basis

atoms being placed at points

r1 ¼ 0; 0; 0;ð Þ; r2 ¼
1

2
a2 þ a3 �

a1

2


 �
¼

a

4
;

a

4
;

a

4


 �
: ð15Þ

Then the matrix Að Þ defined by (L19) is of order 2,

A  ð Þ ¼ I2 � C�
Pnð Þ
pq

L � ;���pq

� �
Bpq þ L  ; �þpq

� �
Dpq

� �
;

ð16Þ

where I2 is the unit matrix of order 2, the matrix C renders

interactions among the scatterers in one crystal plane and the

sum over (p; q) expresses interactions among different atomic

planes. Matrices

Bpq ¼ �
2�i

a1 � a2

�� ��Kpqz

1bpq �
2bT

pq and

Dpq ¼ �
2�i

a1 � a2

�� ��Kpqz

1dpq �
2dT

pq ð17Þ

reflecting the structure of a unit cell are dyads of order 2

formed by the column vectors (matrix dT is a transpose to

matrix d)

1bpq ¼
1

exp ir2 � t
�
pq

� �
					

					; 2bpq ¼ Q
1

exp �ir2 � t
�
pq

� �
					

					;
1dpq ¼

1

exp ir2 � t
þ
pq

� �
					

					; 2dpq ¼ Q
1

exp �ir2 � t
þ
pq

� �
					

					:
Here [see also equation (5)]

t�pq ¼ pb1 þ qb2 � e3Kpqz ¼ K�pq � kjj ð18Þ

and

Q ¼ Q0= 1þ ikQ0ð Þ ð19Þ

with Q0 being the bound scattering length; for silicon Q0 =

4.1 fm (Rauch & Petraschek, 1978). Further

C ¼ �QS0 kð ÞI2 þ
XðnÞ

pq

�
2�iQ

a1 � a2

�� ��Kpqz

 !

�
0 expð�ir2 � t

�
pqÞ

expðir2 � t
þ
pqÞ 0

					
					; ð20Þ

where S0ðkÞ is the intraplanar optical lattice sum given by

(L16), which is essential for evaluating the local field,

S0 kð Þ ¼
X

ðn1;n2Þ6¼ð0;0Þ

0 expðikjn1a1 þ n2a2jÞ

jn1a1 þ n2a2j
exp½ikk � ðn1a1 þ n2a2Þ�

¼ Re S0ðkÞ þ
2�i

ja1 � a2j

X
pq for Kpqz real

1

Kpqz

� ik ð21Þ

with jRe S0ðkÞj ’ 2�=ak2 ’ 1=a in the region ak ’ 1 (see

Appendix A). Finally,

L  ; �ð Þ ¼
exp i�ð Þ

exp i ð Þ � exp i�ð Þ
ð22Þ

results from the plane-wise summation, and the quantities �þpq

and ��pq are determined by the geometry and the wavelength

only,

��pq � �
�
pq kð Þ ¼ a3 � K

�
pq kð Þ; ð23Þ

where K�pqðkÞ is defined in equation (5) with KpqzðkÞ being real.

Thus the sum over (p; q) on the right-hand side of equation

(16) is carried out over a finite number n of different couples

(p; q), which is denoted by
PðnÞ

pq.

Let us note that the diagonal matrix elements A11 and A22 in

equation (16) describe semi-infinite crystals with one atomic

basis, and the non-diagonal ones A12 and A21 containing terms

expð�ir2 � t
�
pqÞ render the interaction of these two crystals

shifted by the vector r2.

By inserting the expressions of Q and S0ðkÞ [equations (19)

and (21)] into equation (20) we can express the matrix Að Þ
through a matrix A0

ð Þ which is determined by the bound

scattering length Q0,

A  ð Þ ¼
Q

Q0

A0  ð Þ: ð24Þ

Here

A0  ð Þ ¼ I2 � C0
�
Pnð Þ
pq

L � ;���pq

� �
B0

pq þ L  ; �þpq

� �
D0

pq

� �
ð25Þ

with B0
pq and D0

pq being given by equation (17) where Q has

been replaced by Q0, i.e.

B0
pq ¼ i	pq

1 expð�ir2 � t
�
pqÞ

expðir2 � t
�
pqÞ 1

					
					;

D0
pq ¼ i	pq

1 expð�ir2 � t
þ
pqÞ

expðir2 � t
þ
pqÞ 1

					
					 ð26Þ
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and C0 is given by equation (20) where Q has also been

replaced by Q0 and S0ðkÞ is replaced by Re S0ðkÞ þ

ð2�i=ja1 � a2jÞ
P

pq for Kpqz real 1=Kpqz, i.e.

C0
¼ �Q0Re S0 kð Þ þ i

Pnð Þ
pq for 	pq real

	pq

 !
I2

þ i
XðnÞ

pq

	pq

0 exp �ir2 � t
�
pq

� �
exp ir2 � t

þ
pq

� �
0

					
					: ð27Þ

In equations (26) and (27) we have introduced

	pq ¼ �
2�Q0

a1 � a2

�� ��Kpqz

¼ �
1

h0Kpqza3z

ð28Þ

with

h0 ¼
a1 � a2

�� ��
2�a3zQ0

¼
1

2�

a

Q0

ð29Þ

being the fundamental parameter of our theory; in silicon

h0 ¼ 0:21� 105.

It is worth noting that in A0
ð Þ the bound scattering length

Q0 appears instead of Q since the imaginary part of Q�1, being

equal to k [see equation (19)], cancels exactly with the term

�k in the imaginary part of the intraplanar lattice sum

[equation (21)] (Dub & Litzman, 2005).

To facilitate the solution of our problem we will use the

matrix A0
ð Þ instead of Að Þ. Substitution of equation (24)

into equation (12) gives an equation for the amplitudes

u0
�ð jÞ ¼ ðQ=Q0Þu�ð jÞ:
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A0  j

� � u0
1  j

� �
u0

2  j

� �				
				 ¼ 0 ð30Þ

where  j are roots of the equation

det A0  ð Þ ¼ 0: ð31Þ

The dispersion relation [equation (31)] has poles for

�þpq þ 2�m and ��pq þ 2�m. As B0
pq and D0

pq are dyads there are

2n solutions of the dispersion relation, each solution  j being

associated with one pole �þpq and/or ��pq. We denote them by

 þpq and  �pq, respectively. The distance j þpq � �
þ
pqj and/or

j �pq � �
�
pqj is of order h�1

0 . Note that by introducing a small

absorption, i.e. putting Q0 ¼ Q0 þ i0�, Im þmn > 0 holds. The

important case arises when the pole �þrs ðkÞ and/or ��rs ðkÞ and

the pole �þ00ðkÞ almost coincide (modulo 2�), the former case

representing the Bragg diffraction condition for the trans-

mission geometry and the latter for the reflection geometry

[see Dub & Litzman (2005)].

Next we evaluate the amplitudes cj of the local field

[equation (10)]. Introducing the notation

y�kl ¼ expði��klÞ ð32aÞ

for all n real �þkl and all n real ��kl, and

x�kl ¼ expði �klÞ ð32bÞ

with  þkl and  �kl being solutions of the dispersion relation

[equation (31)], the square matrix H of order 2n in equation

(13) reads



Here [cf. (L34)]


þmn  
�
kl

� �
¼ Q0 u0

1  
�
kl

� �
þ u0

2  
�
kl

� �
exp �ir2 � t

þ
mn

� �� �
ð34aÞ


�mn  
�
kl

� �
¼ Q0 u0

1  
�
kl

� �
þ u0

2  
�
kl

� �
exp �ir2 � t

�
mnð Þ

� �
ð34bÞ

with u0
�ð 

�
klÞ being given by equation (30) reflect the structure

of a unit cell.

If we inject the plane-wave superposition [equation (10)]

with the coefficients cj, given by equation (13), and the

amplitudes u0
�ð jÞ, given by equation (30), into equation (3a)

we get the external wavefunctions �<ðrÞ and �>ðrÞ above (z <

0) and below (z > Na3z) the crystalline slab, respectively. In

particular, using (L29) and (L38) the wavefunction for z< 0

(in the Bragg geometry) reads

�< rð Þ ¼ �inc rð Þ þ
PðnÞ
pq

�<
pq rð Þ; ð35Þ

where

�<
pq rð Þ ¼ �A exp �ik � a3ð Þ

kz

Kpqz

det M�pq

det H
exp i��pq

� �
� exp iK�pq � r

� �
ð36Þ

is the wavefunction of the (pq)-diffracted beam. The matrix

M�pq of order 2n differs from the matrix H defined by equation

(33) in the first row only. Its first row reads [cf. (L40)]

M�pq

� �
1;j

			 			 ¼				 
�pq  
þ
00

� �
xþ00 � y�pq


�pq  
þ
pq

� �
xþpq � y�pq

. . .

�pq  

þ
uv

� �
xþuv � y�pq

����

�pq  

�
00ð Þ

x�00 � y�pq


�pq  
�
pq

� �
x�pq � y�pq

. . .

�pq  

�
uvð Þ

x�uv � y�pq

				:
ð37Þ

Equation (35) is the exact multiple-beam solution of the

Ewald equations (3a), (3b) for the Bragg case which is valid

for any wavelength, any angle of incidence and for both

coplanar and non-coplanar diffractions.

In the following we will consider reflection on a semi-

infinite crystal (N!1). Introducing a small absorption

ðxþmnÞ
Nþ1
¼ exp½iðN þ 1Þ þmn� ! 0 holds for all (mn) and thus

both 21H! 0 and 21M�pq ! 0, 21H ¼ 21M�pq are submatrices of

H and M�pq. Therefore

det M�pq

det H
¼

det 11M�pq

det 11H

det 22M�pq

det 22H
:

As 22M�pq ¼
22H we get finally

det M�pq

det H
¼

det 11M�pq

det 11H
: ð38Þ

To evaluate the quotient [equation (38)] determining the

wavefunction [equation (36)] is the crucial point of our

development.

4. Two-beam case

In the following we will handle the case when one pole of the

dispersion equation [equation (31)] only, say ��rs, in the Bragg

(reflection) geometry may approach �þ00, which yields the

Bragg diffraction condition, i.e.

�þ00 � �
�
rs ¼ 2�l þ �rsl; ð39Þ

with l being an integer and �rsl ! 0, the other poles being well

separated from both �þ00 � a3 � k and ��rs � a3 � K
�
rs (two-beam

case). Note that the corresponding diffraction vector is

Gh ¼ rg1 þ sg2 � lg3 with h ¼ ðr; s;�lÞ (Dub & Litzman,

2005). It is a straightforward matter to evaluate the relation

between our parameter �rsl and the departure from Bragg’s

angle of the incident beam �� ¼ ���B [see equation (83)

in Dub & Litzman (2005)] for the coplanar case,

�rsl ¼ a3zk2 1

Krsz

sin 2�Bð Þ��þO ��ð Þ
2

� �
ð40Þ

where the component of the reflected wave Krsz is given by

equation (6) and �B is the Bragg angle.

As each solution of equation (31)  þpq ( �pq) lies ‘very’ near

the corresponding pole �þpq (��pq), matrix elements on the main

diagonals of 11H and 11M�rs are of order h0, whereas those

outside the main diagonal are of order 1. Furthermore, as

matrices H and M�rs differ in their first rows only, the quotient

[equation (38)] determining the reflectivity of a semi-infinite

crystal becomes

det M�rs

det H
¼

det 11M�rs

det 11H
¼

�rs  

þ
00

� �

þ00  

þ
00

� � exp i þ00

� �
� exp i�þ00

� �
exp i þ00

� �
� exp i��rsð Þ

� 1þO h�2
0

� �� �
ð41Þ

where  þ00 is to be found from the dispersion relation [equa-

tion (31)]. Within the two-beam case we rearrange the matrix

A0
ð Þ defined by equation (25) as follows:

A0  ð Þ ¼ I2 þU00;rs  ð Þ � L � ;���rsð ÞB0
rs � L  ; �þ00

� �
D0

00;

ð42Þ

where

U00;rs  ð Þ ¼ �C0
�

P
klð Þ6¼ rsð Þ

L � ;���kl

� �
B0

kl

�
P

klð Þ6¼ 00ð Þ

L  ; �þkl

� �
D0

kl ð43aÞ

comprises terms of order h�1
0 rendering multiple reflections in

one crystal plane (the matrix C0) and the influence of all other

beams than (rs) on  þ00, and thus on the reflectivity in the

direction K�rs [the sums on the right-hand side of equation

(43a)]. When looking for  þ00 lying near the pole �þ00 we may

adopt the following approximation:

U00;rs  ð Þ ’ U �þ00

� �
� U ¼

’11 ’12

’21 ’22

				
				; ð43bÞ

where ’ij ¼ Oðh�1
0 Þ, i; j ¼ 1; 2. The matrix elements ’ij are

evaluated for the symmetric reflection in x5 [see equation

(73)].
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Adopting the approximation [equation (43b)] and taking

into account that matrices D0
00 and B0

rs are dyads, the disper-

sion relation [equation (31)] in the two-beam case {where the

Bragg diffraction condition [equation (39)] holds} yields the

second-order equation in expði Þ,

det I2 þUð Þ þ L  ; �þ00

� �
L � ;���rsð Þd� L  ; �þ00

� �
b

� L � ;���rsð Þc ¼ 0; ð44Þ

where

b ¼ 2i	00 þ i	00

�
’11 þ ’22 � ’12 exp ir2 � t

þ
00

� �
� ’21 exp �ir2 � t

þ
00

� ��
; ð45aÞ

c ¼ 2i	rs þ i	rs

�
’11 þ ’22 � ’12 exp ir2 � t

�
00ð Þ

� ’21 exp �ir2 � t
�
00ð Þ
�
; ð45bÞ

d ¼
D0

00;11
D0

00;12

B0
rs;21

B0
rs;22

�����
�����þ B0

rs;11
B0

rs;12

D0
00;21

D0
00;22

�����
�����

¼ �4	00	rssin2
r2 � tþ00 � t�rs

� �
2

¼ �4	00	rssin2 r2 �Q

2
:

ð46Þ

Considering equation (18) and the identity in equation (46)

Kþ00 ¼ k we have introduced the scattering vector Q =

�ðtþ00 � t�rsÞ ¼ K�rs � k. It is worth noting that the d parameter

[equation (46)] which is governed by the term r2 �Q deter-

mined by the structure of a unit cell and the scattering vector

plays a crucial role in our development. Furthermore, note

that the second terms on the right-hand sides of equations

(45a) and (45b) being of order h�2
0 must be kept, as they are

important when we evaluate the reflectivity of forbidden

reflections.

Equation (44) yields the following expression for expði þ00Þ:

exp i þ00

� �
¼ exp i�þ00

� �
1�

exp �ið�rsl=2Þ
� �

ðbcÞ
1=2 ~YY�rsl � bþ dð Þ

det I2 þUð Þ þ c

( )
; ð47Þ

where we have introduced

~YY�rsl ¼ Yrsl � sign Re Yrslð Þ
� �

ðY2
rsl � �Þ

1=2
ð48Þ

with

Yrsl ¼
1

2ðbcÞ1=2

�
dþ bþ cð Þ cos

�rsl

2


 �

þ 2i det I2 þUð Þ þ
dþ bþ c

2

� 
sin

�rsl

2


 ��
ð49Þ

and

� ¼ 1�
d

bc
det I2 þUð Þ; ð50Þ

which, as we will show in the next section, approaches one or

zero for allowed and forbidden reflections, respectively. Note

that the quantities [equations (48) to (50)] depend on the

parameter �rsl, equation (39) expressing the departure from

Bragg’s diffraction position.

Next, considering equations (36), (41) and (47) we find that

the wavefunction �<
rsðrÞ of the diffracted beam in the direction

K�rs (the Bragg geometry) on a semi-infinite crystal

�<
rs rð Þ ¼ �A

kz

Krsz


�rs  
þ
00

� �

þ00  

þ
00

� � L  þ00; �
�
rs

� �
L  þ00; �

þ
00

� � 1þO h�2
0

� �� �
� exp iK�rs � rð Þ ð51Þ

is determined by the product of the L quotient

L  þ00; �
�
rs

� �
L  þ00; �

þ
00

� � ¼ exp i þ00

� �
� exp i�þ00

� �
exp i þ00

� �
� exp i��rsð Þ

exp i ��rs � �
þ
00

� �� �

¼ exp �i
�rsl

2


 �
�d� 2i sin �rsl=2ð ÞðbcÞ

1=2 ~YY�rsl

�2ic sin �rsl=2ð Þ � d exp ið�rsl=2Þ
� �

ð52Þ

and the 
 quotient [see equations (34a), (34b)]


�rs  
þ
00

� �

þ00  

þ
00

� �
¼

1þ u0
2  

þ
00

� �
=u0

1  
þ
00

� �� �
exp �ir2 � t

þ
00

� �
exp ir2 � tþ00 � t�rs

� �� �
1þ u0

2  
þ
00

� �
=u0

1  
þ
00

� �� �
exp �ir2 � t

þ
00

� � :

ð53Þ

Apparently, equation (53) is governed by the term

r2 � ðt
þ
00 � t�rsÞ ¼ �r2 �Q and, as we will show in the next

section, approaches one or zero for allowed and forbidden

reflections, respectively. To evaluate equation (53) we use

equation (30) yielding u0
2ð 
þ
00Þ=u0

1ð 
þ
00Þ ¼�A0

21ð 
þ
00Þ=A0

22ð 
þ
00Þ.

When replacing the matrix elements A0
21  

þ
00

� �
and A0

22ð 
þ
00Þ by

equation (42) with the approximation [equation (43b)] we

obtain that the ratio of the amplitudes of the local fields at

basis atom positions is given by

u0
2  

þ
00

� �
u0

1  
þ
00

� �
¼ �

�
� i	00 exp ir2 � t

þ
00

� �
þ ’21 þ i	rs exp ir2 � t

�
rsð Þ

� �
=L  þ00; �

þ
00

� �
þ i L  þ00; �

�
rs

� �
=L  þ00; �

þ
00

� �� �
	rs exp ir2 � t

�
rsð Þ

�

�

�
� i	00 þ ð1þ ’22 þ i	rsÞ=L  þ00; �

þ
00

� �

þ i L  þ00; �
�
rs

� �
=L  þ00; �

þ
00

� �� �
	rs

��1

: ð54Þ

Equation (51) is our essential result which will be used for

both allowed and forbidden reflections.

5. Allowed and forbidden reflections

The intensity of the diffracted beam is affected by the posi-

tions of atoms in the unit cell. In the Laue theory the influence

of this arrangement on the diffraction intensity is given by the

structure factor [equation (8)], which is the three-dimensional

Fourier transform of the periodic potential of the three-

dimensional infinite crystal lattice (see e.g. Authier, 2001).
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Considering the primitive unit cell [equation (14)] the three-

dimensional reciprocal-lattice basis vectors are

g1 ¼ 2�
1

a
;�

1

a
;�

1

a

� �
; g2 ¼ 2� 0;

2

a
; 0

� �
; g3 ¼ 2� 0; 0;

2

a

� �
;

ð55Þ

and the geometric structure factor of the basis formed by two

silicon atoms at the positions [equation (15)] for the reflection

with the diffraction vector Gh ¼ rg1 þ sg2 � lg3 becomes

F̂F Ghð Þ ¼ F Ghð Þ
�

Q ¼ exp �iGh � r1ð Þ þ exp �iGh � r2ð Þ

¼ 1þ exp �i� �
r

2
þ s� l


 �h i
so that4

F̂F Ghð Þ ¼ 0 for s� 1� r=2 being odd ð56aÞ

F̂F Ghð Þ ¼ 2 for s� 1� r=2 being even: ð56bÞ

Reflections with F̂FðGrs�lÞ ¼ 0 are called forbidden whereas

the others are called allowed. We keep this terminology in our

theory although the reflectivity of the forbidden reflection will

be shown to acquire significant non-zero value in a very

narrow interval.

On the other hand, in our theory, which takes into account

from the very beginning the two-dimensional symmetry of the

slab, the influence of the basis [equation (15)] on the diffrac-

tion intensity is rendered by the term expð�ir2 �QÞ deter-

mining the d parameter [equation (46)] and the 
 quotient

[equation (53)].

In Appendix B we have shown that the scattering vector

Q ¼ K�rs � k is related to the diffraction vector,

Q ¼ Gh �
�rsl

2�
g3: ð57Þ

Then

exp �ir2 �Qð Þ ¼ F̂F Ghð Þ � 1
� �

exp i
�rsl

2


 �
¼ � exp i

�rsl

2


 �
;

ð58Þ

where + and � correspond to allowed [F̂FðGhÞ ¼ 2] and

forbidden [F̂FðGhÞ ¼ 0] reflections, respectively. Using the

above result the d parameter [equation (46)] reads

d ¼ �4	00	rssin2 �rsl

4
ð59aÞ

for allowed reflections and

d ¼ �4	00	rscos2 �rsl

4
ð59bÞ

for forbidden reflections, and the 
 quotient [equation (53)]

becomes


�rs  
þ
00

� �

þ00  

þ
00

� � ¼ 1� u0
2  

þ
00

� �
=u0

1  
þ
00

� �� �
exp �ir2 � t

þ
00

� �
exp ið�rsl=2Þ

� �
1þ u0

2  
þ
00

� �
=u0

1  
þ
00

� �� �
exp �ir2 � t

þ
00

� �
ð60Þ

with + and � corresponding to allowed and forbidden

reflections, respectively. Consequently, in the former case

equation (60) is equal to 1þOð�rslÞ and in the latter it is equal

to Oð�rslÞ. Then it may be supposed that the wavefunction

[equation (51)] for a forbidden reflection, being determined by

the product of the 
 quotient and the L quotient, is of order

Oð�rslÞ, but that is not the full truth. We find there is a very

narrow interval on which the L quotient [equation (52)]

becomes very large so that the reflectivity for a forbidden

reflection approaches one in this interval [see equation (70)].

Next we will discuss the cases of the allowed and forbidden

reflections separately. While the mathematics of the former

are straightforward,5 those of the latter are cumbersome to

describe the subtle effects one needs to consider in terms of

orders both h�1
0 and h�2

0 .

(i) Allowed reflections. Inserting the d parameter [equation

(59a)] into equation (50) we get � ¼ 1þOð�rslÞ. Then equa-

tion (48) takes the form

~YY�rsl ¼ Yrsl � sign Yrslð Þ½Y2
rsl � 1þO h�1

0

� �
�
1=2

ð61Þ

with [see equation (49)]

Yrsl �rslð Þ ¼
1

2ð	00	rsÞ
1=2

	00 þ 	rsð Þ þ
�rsl

2

h i
1þO h�1

0

� �� �

¼
1

2

(
�

Krsz

kz

� �1=2

þ
kz

Krsz

� �1=2
" #

þ
h0

2
a3zðkzKrszÞ

1=2�rsl

)
1þO h�1

0

� �� �
: ð62Þ

As the d parameter is of order h�4
0 for the allowed

reflections the L quotient [equation (52)] is simplified to

expð�i�rsl=2Þð	00=	rsÞ
1=2 ~YY�rsl½1þOðh�1

0 Þ�. Furthermore, as the


 quotient [equation (60)] is equal to 1þOð�rslÞ for the

allowed reflections the wavefunction [equation (51)] becomes

�<
rs rð Þ ¼ A �1ð Þl expð�ik � a3=2Þ

kz

Krsz

� �1=2

� Yrsl � sign Yrslð ÞðY2
rsl � 1Þ1=2

� �
1þO h�1

0

� �� �
� exp½iK�rs � ðrþ a3=2Þ�: ð63Þ

The last equation has the same form as equation (11) of our

former paper (Dub & Litzman, 2001b) deduced for the crystal

with one atomic basis. Comparing equation (10) in Dub &

Litzman (2001b) with equation (62) we can see that the

influence of the basis is rendered by the term h0=2 in the Y

parameter [equation (62)] instead of h0 describing a crystal

with one atomic basis. Finally, note that phase factors

expð�ik � a3=2Þ and expðiK�rs � a3=2Þ express the shift of the

entrance crystal surface above the uppermost atomic layer

m3 ¼ 0 by a3=2 as mentioned already by Dub & Litzman

(2001b).
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4 In both cases r is considered to be even. The case with r odd yielding allowed
reflections with a complex structure factor will not be discussed here.

5 Here we do not consider extreme cases outside the scope of the standard
dynamical theory. Handling special situations, such as e.g. the (allowed)
diffraction at the Bragg angle near �/2, is cumbersome too as terms of orders
both h�1

0 and h�2
0 have to be considered (Litzman & Dub, 1990; Litzman et al.,

1996).



Having found the wavefunction, we evaluate the reflectivity

of allowed diffractions,

I<rsl �rslð Þ ¼
Krsz

kz

�<
rs

�� ��2
�inc

�� ��2 ¼ Yrsl �rslð Þ � sign Yrslð Þ½Y2
rsl �rslð Þ � 1�1=2

�� ��2
� 1þO h�1

0

� �� �
ð64Þ

with h ¼ ðr; s;�lÞ specifying the diffraction vector. The

condition for the total reflection jYrslj 	 1 yields the Darwin

table of the width [cf. equation (3.7) in Litzman et al. (1996)]

Dallowed
¼ 8ð	00	rsÞ

1=2
ð65Þ

being of order h�1
0 , and the deviation from Bragg’s angle of the

middle of the reflection domain

�c
rsl ¼ �2 	00 þ 	rsð Þ: ð66Þ

Finally, note that our formula [equation (64)] corresponds to

equation (4.42) in Authier (2001), derived in the frame of the

Laue diffraction theory, when replacing Yrsl by Authier’s

deviation parameter �, which is also equal to the y parameter

defined by equation (9.23) in Rauch & Petraschek (1978) [for

details see Dub & Litzman (2005)]. However, our result is

valid for both coplanar and non-coplanar diffractions.

(ii) Forbidden reflections. Inserting the d parameter [equa-

tion (59b)] into equation (50) after some algebraic manip-

ulations, we get that � is now of order h�1
0 ,

� ¼ � ’12 þ ’21ð Þ cos r2 � t
þ
00

� �
þ

1

4
’11 � ’22ð Þ

2
þ

1

2
’11 þ ’22ð Þ

� ’12 þ ’21ð Þ cos r2 � t
þ
00

� �
� ’2

12 þ ’
2
21 þ ’12’21

� �
� cos2 r2 � t

þ
00

� �
þ

1

4
’12 þ ’21ð Þ

2
þ

�rsl

4


 �2

: ð67Þ

Then ~YY�rsl ¼ Yrsl � signðY2
rsl � �Þ

1=2, with Yrsl given by equation

(49), is of order h�1
0 . Using this result in equations (52) and

(54) we evaluate the 
 quotient and finally, after some lengthy

algebraic manipulations, we get the wavefunction expressed

by equation (51),

�<
rs rð Þ ¼ �A �1ð Þl exp �ik � a3

�
2

� �
�

kz

Krsz

	00

�rsl þ 2 	00 þ 	rsð Þ þW
ð2Þ
rsl þO h�3

0

� �
� W

ð1Þ
rsl þO h�2

0

� �h i
exp iK�rs � rþ a3

�
2

� �� �
ð68Þ

where

W
ð1Þ
rsl ¼ �i

�rsl

2
þ 2

	rs

	00

� �1=2

~YY�rsl

þ ’21 exp �ir2 � t
þ
00

� �
� ’12 exp ir2 � t

þ
00

� �� �
ð69aÞ

is of order h�1
0 , and

W
ð2Þ
rsl ¼ 2	00

	rs

	00

� �1=2

~YY�rsl �
�rsl

2
þ 	00


 �
½3’21 exp �ir2 � t

þ
00

� �
þ ’12 exp ir2 � t

þ
00

� �
� þ

�rsl

2

�
’11 þ ’22 �

�
’12 exp ir2 � t

�
00ð Þ

þ ’21 exp �ir2 � t
�
00ð Þ
��
þ i 4	00	rs þ �rsl	00 þ

�rsl

2
	rs


 �
ð69bÞ

is of order h�2
0 .

Finally, the reflectivity of the ideal Si(001) crystal, which is

valid for both symmetric and non-symmetric and both

coplanar and non-coplanar forbidden diffractions, reads

I<rsl �rslð Þ ¼
Krsz

kz

�<
rs

�� ��2
�inc

�� ��2 ¼ kz

Krsz

�
	2

00 W
ð1Þ
rsl h�1

0

� ���� ���2
�rsl þ 2 	00 þ 	rsð Þ þ Re W

ð2Þ
rsl h�2

0

� �h in o2

þ Im W
ð2Þ
rsl h�2

0

� �h in o2
:

ð70Þ

Analysing equation (70) we see that for �rsl ¼

�2ð	00 þ 	rsÞ þOðh�2
0 Þ the denominator is of order h�4

0 , and

thus the reflectivity I<rslð�rslÞ is of order one here, while else-

where it is of order h�2
0 . Consequently, there is a very narrow

peak in the reflectivity [equation (70)] in the vicinity of

�c
rsl ¼ �2ð	00 þ 	rsÞ [see also equation (66) derived for the

allowed reflections]. Note that the reflectivity peak width of

forbidden reflections is of order h�2
0 , whereas the DTW of

allowed reflections is of order h�1
0 [see equation (65)]. Thus

the ratio of the widths of the former and the latter cases is of

the order Q0=a ’ 10�5 which agrees with the result by Igna-

tovich et al. (1996) obtained for symmetric reflections.

5.1. Forbidden symmetric reflection of the Si(001) crystal in
the Bragg geometry

As an example we will concern ourselves with the forbidden

(l is odd) symmetric [ðr; sÞ ¼ ð0; 0Þ] reflection. Here the

deviation from Bragg’s angle of the middle of the reflection

domain �c
001 ¼ �4	00, the Bragg diffraction condition [equa-

tion (39)] reads

�þ00 � �
�
00 ¼ ak cos �B ¼ 2�l ð71Þ

and

r2 � t
�
00 ¼ � ak cos �Bð Þ

�
4 ¼ �

�

2
l ð72Þ

with �B ¼ �=2��B being the angle of incidence (measured

from the inner normal to the surface) at the Bragg reflection.

In the following we consider that l = 1. Then equation (28)

yields 	00 ¼ �2ðQ0=aÞ and the Bragg angle equals �B ¼

arcsinð�=aÞ. Furthermore, averaging over oscillations in

equation (43a), matrix elements in equation (43b) read

’11 ¼ ’22 ¼ �i	00 þ 	00�; ’12 ¼ ’21 ¼ 	00; ð73Þ

where the term

� ¼ Q0Re S0 kð Þ
�
	00; ð74Þ

being of order one, expresses local-field corrections.
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To evaluate the reflectivity I<001 in the vicinity of

�c
001 ¼ �4	00 we express the deviation parameter �001 as

�001 ¼ �
c
001 þ 4	2

00 ð75Þ

with  being of order one. Considering equation (75), using

equation (72) and adopting the approximations [equation

(73)], the � parameter [equation (67)] reduces to

� ¼ 2	2
00 þOðh�3

0 Þ, equation (49) yields Y001 ¼ �	00ð � �Þ
þ Oðh�2

0 Þ, and equations (69a) and (69b) give W
ð1Þ
001 ¼

2 ~YY�001 þOðh�2
0 Þ and W

ð2Þ
001 ¼ 2	00

~YY�001 � 4	2
00� þOðh�3

0 Þ,

respectively, with [see equation (48)]

~YY�001 ¼ Y001 � sign Y001ð ÞðY2
001 � �Þ

1=2

¼ 	00 �  � �ð Þ þ sign  � �ð Þ  � �ð Þ
2
� 2

� �1=2
n o

þO h�2
0

� �
:

ð76Þ

Finally, inserting the above formulae into equation (68) we get

the reflectivity6

I<001 ¼
�<

00

�� ��2
�inc

�� ��2 ¼
~YY�001

2	00  � �ð Þ þ ~YY�001

�����
�����

2

¼
�  � �ð Þ þ sign  � �ð Þ½  � �ð Þ

2
� 2�1=2

 � �ð Þ þ sign  � �ð Þ½  � �ð Þ
2
� 2�1=2

�����
�����

2

: ð77Þ

From here we can see that if �21=2 < � � < 21=2 holds, the

reflectivity I<001 equals unity whereas outside this interval it

goes rapidly to zero. Hence we may conclude that there exists

the Darwin table of the width

Dforbidden
001 ¼ 8ð2Þ1=2	2

00 ¼ 32ð2Þ1=2 Q0

a

� �2

ð78Þ

centred at �ðcÞ001 þ 4	2
00� ¼ 8ðQ0=aÞ½1þ 2ðQ0=aÞ�� in the

forbidden symmetric reflection (see Fig. 1). Note that �
defined by equation (74) causes a tiny shift of the table centre

while it does not affect the table width.

Finally, we put down the angular width of the Darwin

table j��jFDT of the forbidden reflection, and the angular

deviation from Bragg’s angle of the middle of the reflection

domain, ��c ¼ �c ��B. Considering equations (40) and

(71) with l ¼ 1, we get for the symmetric Bragg reflection

(001) that j��jFDT ¼ ðD
forbidden
001

�
2�Þ tan �B and ��c ¼

ð�c
001

�
2�Þ tan �B. Inserting here for Dforbidden

001 from equation

(78) and �c
001 ¼ �4	00 ¼ 8ðQ0

�
aÞ, respectively, we obtain

��j jFDT ¼
16ð2Þ1=2

�

Q0

a

� �2

tan �B ð79Þ

and

��c ¼
4

�

Q0

a

� �
tan �B; ð80Þ

where �B ¼ arcsinð�=aÞ is yielded by equation (71). Consid-

ering diffraction of thermal neutrons (� ¼ 0.1 nm) on a single

Si crystal (Q0 = 4.1 fm, a = 0.5430 nm) we get j��jFDT ¼

1:6� 10�5 arcsec and ��c ¼ 0.4 arcsec.

6. Summary and concluding remarks

In this paper we have treated the diffraction of neutrons on an

ideal semi-infinite single silicon crystal Si(001) as a multiple

scattering problem based upon the Ewald equations (3a), (3b).

As we have considered from the very beginning the bordered

crystal, we have naturally overcome the boundary conditions

problem which, as pointed out by von Laue (1941), is ‘the

weakest point of the dynamical diffraction theory’. The

question of where to locate the boundary taken as a mathe-

matical plane is of fundamental importance particularly in

crystals with a distributed cell content (Juretschke, 1992). We

have found {see wavefunctions [equations (63) and (68)] for

allowed and forbidden reflections, respectively} that a math-

ematical boundary plane lies above the uppermost atomic

layer, the shift vector being equal to a3=2. Thus we have

confirmed the result which we already derived for the crystal

with the cell containing one atom only (Dub & Litzman,

2001b). Furthermore, when considering from the very

beginning the two-dimensional translation symmetry of the

problem, we have found that no structure factor being the

Fourier transform of a three-dimensional crystal appears.

Instead, in our development the influence of the two atomic

silicon basis on diffraction intensity in the direction K�rs is

rendered by the term expð�ir2 �QÞ with Q ¼ K�rs � k being
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Figure 1
Reflectivity profile of the forbidden symmetric (001) reflection on the
Si(001) thick crystal. The deviation from Bragg’s angle of the middle of
the reflection domain is given by equation (80), ��c ¼

�c ��B ¼ ð4=�ÞðQ0=aÞ tan �B ¼ 0:4 arcsec, where �B ¼ arcsinð�=aÞ ¼
10.6
. The angular width of the forbidden Darwin table (FDT) is
given by equation (79), j��jFDT ¼ ½16ð2Þ1=2=��ðQ0=aÞ2 tan �B ¼

1:6� 10�5 arcsec. Numerical values characterize diffraction of thermal
neutrons (� ¼ 0:1 nm) on a single Si crystal (Q0 = 4.1 fm, a ¼ 0:5430 nm).
Using the conventional unit cube notation this case corresponds to the
(002) reflection. (Note, if the reflection was allowed the Darwin table
width would broaden, becoming 2��c.)

6 When using the conventional unit cube notation this case represents the
(002) diffraction.



the scattering vector. The term expð�ir2 �QÞ acquires oppo-

site signs for allowed and forbidden reflections [see equation

(58)] and thus affects substantially the value of the d para-

meter [equations (59a), (59b)] determining the solution of the

dispersion relation [see equations (47) to (50)], and also the

L quotient [equation (52)] and 
 quotient [equation (60)]

controlling the wavefunction of the reflected beam [equation

(51)]. Moreover, the scattering vector is related to the

diffraction one by equation (57), Q ¼ Gh � ð�rsl=2�Þg3. While

in the case of allowed reflections the scattering vector Q may

be put equal to the diffraction vector Gh, the small correction

given by the parameter �rsl [equation (39)] expressing the

departure from Bragg’s diffraction position must be consid-

ered and provides the narrow Darwin table to forbidden

reflections. Finally, note that, applying the matrix formulation

of the Ewald theory to a silicon crystal, instead of the

conventional unit cube of an f.c.c. lattice containing four

lattice points, we have used the primitive unit cell containing

two Si atoms.

In summary, the main results of our paper are the dispersion

equation (44) and formula (51) for the wavefunction �<
rsðrÞ of

the reflected beam in the direction K�rs in the Bragg geometry.

By using them, we have analysed the cases of allowed and

forbidden reflections. Whereas in the former case our reflec-

tivity formula [equation (64)] corresponds to that derived in

the frame of the Laue diffraction theory, in the latter one we

have found that unlike the Laue theory predicting zero

intensity there exists a very narrow peak in reflectivity

[equation (70)], which is the result of the broken symmetry

due to the border of a crystal. The results obtained hold for

both symmetric and non-symmetric reflections and for both

coplanar and non-coplanar ones. It is worth noting that

elements of the � matrix [equation (43b)] also enter equation

(70), rendering the influence of beams other than (rs) on the

reflectivity in the direction K�rs , and local-field correction. In

the case of forbidden reflections we have confirmed the result

by Ignatovich et al. (1996) who found, using an artificial model

of a crystal with two identical atoms in an elementary cell, that

a forbidden symmetric reflection possesses a finite DTW

which differs from that of a non-forbidden (allowed) one by

order 10�5. They utilized the approach in which the crystal is

imagined to be cut in slices parallel to the entrance surface and

the scattering on a slice is described by direct transmission and

specular reflection. The formalisms used by Ignatovich et al.

and by us differ substantially. Nevertheless, their interpreta-

tion of the effect corresponds to our finding that the slight

difference between the scattering and diffraction vectors given

by the departure from Bragg’s diffraction position accounts

for the finite DTW in forbidden reflections. Furthermore, their

remark that the first plane screens the second one inside a

single period since amplitudes of the waves reflected by the

two planes are different is related to our equation (54), indi-

cating that the amplitudes of the local fields at the positions of

the first and second basis atom differ.7

Concluding, let us note that the method explained may be

applied to any crystal but matrices Bpq and Dpq given by

equation (17) reflecting the structure of a unit cell will change,

the order of them being given by the number of atoms in a unit

cell.

APPENDIX A
The intraplanar lattice sum [equation (21)]

Looking for the approximate value of the sum [equation (21)]

we can write (Dub et al., 1996)

S0 kð Þ ¼
1

a2

Z1
a

Z2�
0

exp ikrð Þ exp ikjjr cos ’
� �

dr d’

¼
2�

a2

Z1
a

exp ikrð Þ J0 kjjr
� �

dr; ð81Þ

where J0ðxÞ is the Bessel function. As
R1

0 cosðkrÞ J0ðk
jjrÞ dr = 0

for kjj< k, in the region where ak ’ 1 we can put approxi-

mately jRe S0ðkÞj ’ 2�=ak2.

APPENDIX B
Relation between the scattering and diffraction vectors

The vector K�rs defined by equation (5) may be expressed as

K�rs ¼ kþ y1g1 þ y2g2 þ y3g3. Since gjj1 ¼ b1, gjj2 ¼ b2, we get

y1 = r and y2 = s and thus K�rs ¼ kþ rg1 þ sg2 þ y3g3 [see also

equation (84) in Dub & Litzman (2005)]. Multiplying the last

equation by a3 we obtain ��rs ¼ �
þ
00 þ 2�y3 [cf. definition (23)].

After using the Bragg diffraction condition [equation (39)] we

get y3 ¼ �l � �rsl=2� and finally

Q ¼ K�rs � k ¼ rg1 þ sg2 � lg3 �
�rsl

2�
¼ Gh �

�rsl

2�
; ð82Þ

where Gh ¼ rg1 þ sg2 � lg3 is the diffraction vector.
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